
  

Graph Theory
Part Two



  

Outline for Today

● Graph Complements
● Flipping what’s in a graph.

● The Pigeonhole Principle
● A simple yet surprisingly effective fact.

● Graph Theory Party Tricks
● Cool tricks to try at your next group meeting.

● A Little Movie Puzzle
● Who watched what?



  

Recap from Last Time



  

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes (or 
vertices) connected by edges (or arcs)
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Formalizing Graphs

● An unordered pair is a set {a, b} of two elements 
a ≠ b. (Remember that sets are unordered.)
● For example, {0, 1} = {1, 0}

● An undirected graph is an ordered pair G = (V, E), 
where
● V is a set of nodes, which can be anything, and
● E is a set of edges, which are unordered pairs of nodes 

drawn from V.
● A directed graph (or digraph) is an ordered pair 

G = (V, E), where
● V is a set of nodes, which can be anything, and
● E is a set of edges, which are ordered pairs of nodes 

drawn from V.
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A graph G is called connected 
if all pairs of distinct nodes in 
G are reachable.

A connected component (or 
CC) of G is a maximal set of 
mutually reachable nodes.



  

New Stuff!



  

Graph Complements



  

B

DC

A

Let G = (V, E) be an undirected graph.
The complement of G is the graph Gc = (V, Ec), where

Ec = { {u, v} | u ∈ V, v ∈ V, u ≠ v, and {u, v} ∉ E }

G = (V, E)
V = { A, B, C, D }
E = {{A, B}, {B, C}}

Based on the definition below, 
what is Gc for this graph? Give 
your answer as sets V and Ec. 

Respond at 
pollev.com/zhenglian740
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Theorem: For any graph G = (V, E),
at least one of G and Gc is connected.



  

Proving a Disjunction

● We need to prove the statement

G is connected    ∨    Gc is connected.
● Here’s a neat observation.

● If G is connected, we’re done.
● Otherwise, G isn’t connected, and we have to prove 

that Gc is connected.
● We will therefore prove

G is not connected    →    Gc is connected.

For any graph G = (V, E),
at least one of G and Gc is connected.
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● Here’s a neat observation.

● If G is connected, we’re done.
● Otherwise, G isn’t connected, and we have to prove 

that Gc is connected.
● We will therefore prove

G is not connected    →    Gc is connected.

For any graph G = (V, E),
if G is not connected, then Gc is connected.
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For any graph G = (V, E),
if G is not connected, then Gc is connected.
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For any graph G = (V, E),
if G is not connected, then Gc is connected.

If you can’t reach all the 
nodes following blue edges,



  

Graph GcGraph G

For any graph G = (V, E),
if G is not connected, then Gc is connected.

If you can’t reach all the 
nodes following blue edges,

Then you can reach all 
the nodes via red edges.
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For any graph G = (V, E),
if G is not connected, then Gc is connected.
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≈

☜

꩜ +

○

★

⬠ △

What happens if we look at two nodes that are not 
connected in G? 

Observation: two nodes in G in different CC’s of G 
become adjacent in Gc. 



  

For any graph G = (V, E),
if G is not connected, then Gc is connected.
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What happens if we look at two nodes that are 
connected in the original graph? 

△

Observation: Any two nodes in G in the same CC can be 
“bridged” in Gc through a node in a different CC of G.



  

For any graph G = (V, E),
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the same CC can be 
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a node in a different CC 

of G.



  

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.

Case 2: u and v are in the same connected component of G. Since
G is not connected, there are at least two connected components
of G. Pick any node z that belongs to a different connected
component of G than u and v. Then by the reasoning from Case 1
we know that {u, z} ∈ Ec and {z, v} ∈ Ec. This gives a path u, z, v
in Gc from u to v.

In either case, we find a path from u to v in Gc, as required. ■
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The Pigeonhole Principle

● Theorem (The Pigeonhole Principle): 
If m objects are distributed into n bins 
and m > n, then at least one bin will 
contain at least two objects.
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m = 4, n = 3



  

Some Simple Applications
● Any group of 367 people must have a pair of 

people that share a birthday.
● 366 possible birthdays (pigeonholes).
● 367 people (pigeons).

● Two people in San Francisco have the exact 
same number of hairs on their head.
● Maximum number of hairs ever found on a 

human head is no greater than 500,000.
● There are over 800,000 people in San Francisco.



  

Proving the Pigeonhole Principle



  

Theorem: If m objects are distributed into n bins and m > n,
then there must be some bin that contains at least two objects.

Proof: Suppose for the sake of contradiction that, for some m and
n where m > n, there is a way to distribute m objects into n
bins such that each bin contains at most one object.

Number the bins 1, 2, 3, …, n and let xᵢ denote the number of 
objects in bin i. There are m objects in total, so we know that

  m = x₁ + x₂ + … + xₙ.

Since each bin has at most one object in it, we know xᵢ ≤ 1 for 
each i. This means that

  m = x₁ + x₂ + … + xₙ
≤ 1  +  1 + … + 1   (n times)
= n.

This means that m ≤ n, contradicting that m > n. We’ve 
reached a contradiction, so our assumption must have been 
wrong. Therefore, if m objects are distributed into n bins with 
m > n, some bin must contain at least two objects. ■



  

Pigeonhole Principle Party Tricks



  



  



  



  

Degrees

● The degree of a node v in a graph is the 
number of nodes that v is adjacent to.

 

● Theorem: Every graph with at least two 
nodes has at least two nodes with the same 
degree.
● Equivalently: at any party with at least two 

people, there are at least two people with the 
same number of friends at the party.

1      

2            1

      0
      3

3            3

      3



  

A

B C

D

EF

0 1 2 3 4 5

AB C
D

E

F



  

0 1 2 3 4 5

A

B C

D

EF



  

0 1 2 3 4 5

A

B C

D

EF

With n nodes, there 
are n possible 

degrees
(0, 1, 2, …, n – 1)
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Theorem: In any graph with at least two nodes, there are
at least two nodes of the same degree.

Proof 1: Let G be a graph with n ≥ 2 nodes. There are n
possible choices for the degrees of nodes in G, namely,
0, 1, 2, …, and n – 1.

We claim that G cannot simultaneously have a node u of 
degree 0 and a node v of degree n – 1: if there were such 
nodes, then node u would be adjacent to no other nodes 
and node v would be adjacent to all other nodes, 
including u. (Note that u and v must be different nodes, 
since v has degree at least 1 and u has degree 0.)

We therefore see that the possible options for degrees of 
nodes in G are either drawn from 0, 1, …, n – 2 or from
1, 2, …, n – 1. In either case, there are n nodes and n – 1 
possible degrees, so by the pigeonhole principle two 
nodes in G must have the same degree. ■
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Theorem: In any graph with at least two nodes, there are
at least two nodes of the same degree.

Proof 2: Assume for the sake of contradiction that there
is a graph G with n ≥ 2 nodes where no two nodes
have the same degree. There are n possible choices
for the degrees of nodes in G, namely 0, 1, 2, …, n – 1,
so this means that G must have exactly one node of
each degree. However, this means that G has a node
of degree 0 and a node of degree n – 1. (These can't
be the same node, since n ≥ 2.) This first node is
adjacent to no other nodes, but this second node is
adjacent to every other node, which is impossible.

We have reached a contradiction, so our assumption 
must have been wrong. Thus if G is a graph with at 
least two nodes, G must have at least two nodes of the 
same degree. ■



  

The Generalized Pigeonhole Principle
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The Pigeonhole Principle



The Pigeonhole Principle

Imagine you trying to put 11 objects into 5 bins. How many of the 
following statements are true?

● The bin with the most objects must contain at least 2 objects.
● The bin with the most objects must contain at least 3 objects.
● The bin with the most objects must contain at least 4 objects.
● The bin with the fewest objects must contain at most 1 object.
● The bin with the fewest objects must contain at most 2 objects.
● The bin with the fewest objects must contain at most 3 objects.

Respond at pollev.com/zhenglian740



  

The Pigeonhole Principle
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5
= 2
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A More General Version
● The generalized pigeonhole principle says 

that if you distribute m objects into n bins, then
● some bin will have at least ⌈m/ₙ⌉ objects in it, and
● some bin will have at most ⌊m/ₙ⌋ objects in it.

⌈m/ₙ⌉ means “m/ₙ, rounded up.”
⌊m/ₙ⌋ means “m/ₙ, rounded down.”

  m = 11
   n = 5

⌈m / n⌉ = 3
⌊m / n⌋ = 2
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m = 8, n = 3



  

Theorem: If m objects are distributed into n > 0 bins, then some
bin will contain at least ⌈m/ₙ⌉ objects.

Proof: We will prove that if m objects are distributed into n bins, then
some bin contains at least m/ₙ objects. Since the number of objects in
each bin is an integer, this will prove that some bin must contain at
least ⌈m/ₙ⌉ objects.

To do this, we proceed by contradiction. Suppose that, for some m and 
n, there is a way to distribute m objects into n bins such that each bin 
contains fewer than m/ₙ objects.

Number the bins 1, 2, 3, …, n and let xᵢ denote the number of objects 
in bin i. Since there are m objects in total, we know that

  m = x₁  +  x₂  + … + xₙ.

Since each bin contains fewer than m/ₙ objects, we see that
xᵢ < m/ₙ for each i. Therefore, we have that

  m = x₁  +  x₂  + … + xₙ
< m/ₙ + m/ₙ  + … + m/ₙ  (n times)
= m.

But this means that m < m, which is impossible. We have reached a 
contradiction, so our initial assumption must have been wrong. 
Therefore, if m objects are distributed into n bins, some bin must 
contain at least ⌈m/ₙ⌉ objects. ■



  

An Application: Friends and Strangers



  

Friends and Strangers

● Suppose you have a party of six people. 
Each pair of people are either friends 
(they know each other) or strangers (they 
do not).

● Theorem: Any such party must have a 
group of three mutual friends (three 
people who all know one another) or three 
mutual strangers (three people, none of 
whom know any of the others).



  



  



  



  



  



  



  

This graph is called a 6-
clique, by the way.



  



  



  



  



  

Friends and Strangers Restated

● From a graph-theoretic perspective, the 
Theorem on Friends and Strangers can 
be restated as follows:

Theorem: Any 6-clique whose edges are 
colored red and blue contains a red 
triangle or a blue triangle (or both).

● How can we prove this?



  



  



  



  



  



  



  

Observation 1: If 
we pick any node in 
the graph, that node 

will have at least 
⌈5/2⌉ = 3 edges of 

the same color 
incident to it.



  



  



  



  



  



  



  



  



  

Theorem: Consider a 6-clique in which every edge is colored
either red or blue. Then there must be a triangle of red
edges, a triangle of blue edges, or both.

Proof: We need to show that the colored 6-clique contains a
red triangle or a blue triangle.

Let x be any node in the 6-clique. It is incident to five 
edges and there are two possible colors for those edges. 
Therefore, by the generalized pigeonhole principle, at 
least ⌈⁵/₂⌉ = 3 of those edges must be the same color. 
Without loss of generality, assume those edges are blue.

Let r, s, and t be three of the nodes adjacent to node x 
along a blue edge. If any of the edges {r, s}, {r, t}, or {s, 
t} are blue, then one of those edges plus the two edges 
connecting back to node x form a blue triangle. Otherwise, 
all three of those edges are red, and they form a red 
triangle. Overall, this gives a red triangle or a blue 
triangle, as required. ■



  

Ramsey Theory

● The theorem we just proved is a special case of a 
broader result.

● Theorem (Ramsey’s Theorem): For any natural 
number n, there is a smallest natural number 
R(n) such that if the edges of an R(n)-clique are 
colored red or blue, the resulting graph will 
contain either a red n-clique or a blue n-clique.
● Our proof was that R(3) ≤ 6.

● A more philosophical take on this theorem: true 
disorder is impossible at a large scale, since no 
matter how you organize things, you’re 
guaranteed to find some interesting substructure.



  

Let’s take a quick break!



  

Time-Out for Announcements!



  

Problem Set

● Problem Set 2 solutions are up on the 
course website – please take a look at 
them as soon as possible. 

● TAs are working hard on grading your 
assignments. We’re aiming to have those 
returned to you by Wednesday before 
class. 



  

Back to CS103!



  

A Little Math Puzzle



  

  “In a group of n > 0 people …
 

    · 90% of those people enjoyed Get Out,
  · 80% of those people enjoyed Lady Bird,
  · 70% of those people enjoyed Arrival, and
  · 60% of those people enjoyed Zootopia.

 

  No one enjoyed all four movies. How many people 
  enjoyed at least one of Get Out and Arrival?”

(Adapted from here.)

https://math.stackexchange.com/questions/2874859/drinking-habits-riddle-the-village-is-90807060-300-saturat


  

Other Pigeonhole-Type Results



  

If m objects are distributed into n 
boxes, then [condition] holds.



  

If m objects are distributed into n 
boxes, then some box is loaded to at 

least the average ᵐ/ₙ, and some box is 
loaded to at most the average ᵐ/ₙ.



  

If m objects are distributed into n 
boxes, then [condition] holds.



  



  



  



  



  



  

Theorem: If m objects are distributed into 
n bins, then there is a bin containing more 
than ᵐ/ₙ objects if and only if there is a bin 

containing fewer than ᵐ/ₙ objects.



  

Lemma: If m objects are distributed into n bins and there are no bins
containing more than ᵐ/ₙ objects, then there are no bins containing
fewer than ᵐ/ₙ objects.

Proof: Assume for the sake of contradiction that m objects are distributed
into n bins such that no bin contains more than ᵐ/ₙ objects, yet some
bin has fewer than ᵐ/ₙ objects.

For simplicity, denote by xᵢ the number of objects in bin i. Without loss of 
generality, assume that bin 1 has fewer than ᵐ/ₙ objects, meaning that x₁ 
< ᵐ/ₙ. Adding up the number of objects in each bin tells us that

           m =  x₁ + x₂ + x₃ + … + xₙ

    <  ᵐ/ₙ + x₂ + x₃ + … + xₙ

 ≤  ᵐ/ₙ + ᵐ/ₙ + ᵐ/ₙ + … + ᵐ/ₙ.

This third step follows because each remaining bin has at most ᵐ/ₙ 
objects. Grouping the n copies of the ᵐ/ₙ term here tells us that

          m <  ᵐ/ₙ + ᵐ/ₙ + ᵐ/ₙ + … + ᵐ/ₙ

        =  m.

But this means m < m, which is impossible. We’ve reached a 
contradiction, so our assumption was wrong, so if m objects are 
distributed into n bins and no bin has more than ᵐ/ₙ objects, no bin has 
fewer than ᵐ/ₙ objects either. ■
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  “In a group of n > 0 people …
 

    · 90% of those people enjoyed Get Out,
  · 80% of those people enjoyed Lady Bird,
  · 70% of those people enjoyed Arrival, and
  · 60% of those people enjoyed Zootopia.

 

  No one enjoyed all four movies. How many people 
  enjoyed at least one of Get Out and Arrival?”

Linda Anabelle Amy Victoria
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L

Z
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Insight 1: Model movie 
preferences as balls (movies) in 

bins (people).

Insight 2: There are n total 
bins, one for each person.
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.9n + .8n + .7n + .6n
= 3n

Insight 3: There are 3n balls 
being distributed into n bins.

Insight 4: The average number 
of balls in each bin is 3.
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    · 90% of those people enjoyed Get Out,
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  · 70% of those people enjoyed Arrival, and
  · 60% of those people enjoyed Zootopia.

 

  No one enjoyed all four movies. How many people 
  enjoyed at least one of Get Out and Arrival?”

Insight 5: No one enjoyed more 
than three movies…

Insight 6: … so no one enjoyed 
fewer than three movies …

Insight 7: … so everyone 
enjoyed exactly three movies.



  

  “In a group of n > 0 people …
 

    · 90% of those people enjoyed Get Out,
  · 80% of those people enjoyed Lady Bird,
  · 70% of those people enjoyed Arrival, and
  · 60% of those people enjoyed Zootopia.

 

  No one enjoyed all four movies. How many people 
  enjoyed at least one of Get Out and Arrival?”

Insight 8: You have to enjoy at 
least one of these movies to 

enjoy three of the four movies.
Conclusion: Everyone liked at 
least one of these two movies!



  

Theorem: In the scenario described here, all n people enjoyed at least
one of Get Out and Arrival.

Proof: Suppose there is a group of n people meeting these criteria. We 
can model this problem by representing each person as a bin and
each time a person enjoys a movie as a ball. The number of balls is

.9n + .8n + .7n + .6n = 3n,

and since there are n people, there are n bins. Since no person liked 
all four movies, no bin contains more than 3 = ³ⁿ/ₙ balls, so by our 
earlier theorem we see that no bin contains fewer than three balls. 
Therefore, each bin contains exactly three balls.

Now suppose for the sake of contradiction that someone didn’t enjoy 
Get Out and didn’t enjoy Arrival. This means they could enjoy at most 
two of the four movies, contradicting that each person enjoys exactly 
three.

We’ve reached a
contradiction, so our
assumption was
wrong and each
person enjoyed at
least one of Get Out
and Arrival. ■
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Going Further

● The pigeonhole principle can be used to prove a ton of 
amazing theorems. Here’s a sampler:
● There is always a way to fairly split rent among multiple people, 

even if different people want different rooms. (Sperner’s lemma)
● You and a friend can climb any mountain from two different 

starting points so that the two of you maintain the same altitude 
at each point in time. (Mountain-climbing theorem)

● If you model coffee in a cup as a collection of infinitely many 
points and then stir the coffee, some point is always where it 
initially started. (Brower’s fixed-point theorem)

● A complex process that doesn’t parallelize well must contain a 
large serial subprocess. (Mirksy’s theorem)

● Any positive integer n has a nonzero multiple that can be written 
purely using the digits 1 and 0. (Doesn’t have a name, but still 
cool!)



  

More to Explore

● Interested in more about graphs and the pigeonhole 
principle? Check out…
● … Math 107 (Graph Theory), a deep dive into graph theory.
● … Math 108 (Combinatorics), which explores a bunch of 

results pertaining to graphs and counting things.
● … CS161 (Algorithms), which explores algorithms for 

computing important properties of graphs.
● … CS224W (Deep Learning on Graphs), which uses a mix 

of mathematical and statistical techniques to explore 
graphs.

● Happy to chat about this in person if you’d like.



  

Next Time

● Mathematical Induction
● Reasoning about stepwise processes!

● Applications of Induction
● To numbers!
● To anticounterfeiting!
● To puzzles!
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